Contents

If 1,ww2 are the cube roots of unity, then 
1+w=…….
a) 0         
b)w         
c)w2
d)-w2

d

Solution:                1+w+w2=0             1+w=-w2



If 1,w,w2 are the cube roots of unity, then w+w2=…….
a) 1         
b)-1                         
c)w2             
d)-w2

b

Solution:1+w+w2= 0            w+w2=-1



If w is complex cube root of unity, then w7 =
a) w
b) –w                      
c)w2        
d)-w2

a

Solution:As w3=1                 So,w7=w3.w3.w
=1.1.w                                    =w



If w is complex cube root of unity, then w23 =
a)w         
b) – w                     
c)w2        
d) – w2

c

Solution:As w3=1
So,w23=(w3)7.w2       =(1)3.w2  =w2



If w is complex cube root of unity, then w63 =
a)w         
b)1                          
c)w2        
d) – w2

b

Solution:                As w3=1
So,w63=(w3)21                                     =(1)63      =1



If w is complex cube root of unity, then w-5 =
a)w         
b) 1                         
c)w2        
d)w-2

a