Contents

a3 +3ab(a + b) + b3 is equal to…….
a) (a – b)3                                 
b) (a + b)3
c) a3 + b3                                  
d) a3 – b3         

b

a3 – 3ab(a – b) – b3 is equal to…….
a) (a – b)3                                
b) (a + b)3
c) a3 + b3                                  
d) a3 – b3

a

(a + b)2 – (a – b)2 is equal to…….
a) 2ab                          
b) a2 – b2
c) 4ab                          
d) a+ b2

c

Explanation:(a + b)2 – (a – b)2
(a2 + b+2ab) – (a2 + b–2ab)
a2 + b2+2ab – a2b2 + 2ab       = 4ab



Find the value of a3 + b3, when a+b=4, and ab=5
a) 4      
b) 20                
c) 64    
d) 320

a

Explanation:a + b=4
(a+b)3=(4)3
a3 + b3+3ab(a + b)        = 64 putting the values 
a3 + b3 + 3(5)(4) = 64
a3 + b3+ 60 =64                        a3 + b3=64 – 60 
a3 + b3=4



Find the value of a3 + b3, when a+b=3, and ab=20
a) 4      
b) - 4                
c)- 153 
d) 340

c

Explanation:a + b= 3
(a+b)3=(3)3
a3 + b3+3ab(a + b)        = 27putting the values 
a3 + b3 + 3(20)(3) = 27
a3 + b3+ 180 =27                      a3 + b3= 27 – 180 
a3 + b3=  – 153



Find the value of a3– b3, when a – b=2, and ab= 15
a) 98    
b) - 98              
c) 150
d) 30

a

Explanation:a + b= 3
(a–b)3=(2)3
a3– b3– 3ab(a – b)        = 8     putting the values 
a3– b3 – 3(15)(2) = 8
a3– b3– 90 = 8              a3– b3= 8 + 90 
a3– b3=  98