Contents

A two-dimensional rotation is applied to an object by :
a) Repositioning it along with a straight-line path                        
b) Repositioning it along with a circular path
c) Repositioning it along with an elliptical path
d) None of these

b

Positive values for the rotation angle θ defines:
a) Counterclockwise rotations about the endpoints                    
b) Counterclockwise translation about the pivot points
c) Counterclockwise rotations about the pivot points                              
d) Clockwise rotations about the pivot points

c

The original coordinates of the point in polar coordinates are :
a) 
𝓍ˊ = 𝓇 cos(ϕ + θ) & 𝒴ˊ = 𝓇 cos(ϕ + θ)
b) 
𝓍ˊ = 𝓇 cos(ϕ + θ) & 𝒴ˊ = 𝓇 sin(ϕ + θ)
c) 𝓍ˊ = 𝓇 cos(ϕ − θ) & 𝒴ˊ = 𝓇 cos(ϕ − θ)
d) 
𝓍ˊ = 𝓇 cos(ϕ + θ) & 𝒴ˊ = 𝓇 cos(ϕ − θ)

b

-----------is the rigid body transformation.
a) Scaling                             
b) Shear
c) Rotation                          
d) None of these

c

The transformation that produces a mirror image of an object relative to an axis is called:
a) Rotation                          
b) Translation
c) Reflection                       
d) All of these

c

A transformation that slants the shape of objects is called:
a) Shear                                               
b) Translation
c) Reflection                        
d) All of these

a